Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(7): 3692-3706, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29373706

RESUMO

In eukaryotes, ribosome biogenesis requires folding and assembly of the precursor rRNA (pre-rRNA) with a large number of proteins and snoRNPs into huge RNA-protein complexes. In spite of intense genetic, biochemical and high-resolution cryo-EM studies in Saccharomyces cerevisiae, information about the structure of the 35S pre-rRNA is limited. To overcome this, we performed high-throughput SHAPE chemical probing on the 35S pre-rRNA within 90S pre-ribosomes. We focused our analyses on external (5'ETS) and internal (ITS1) transcribed spacers as well as the 18S rRNA region. We show that in the 35S pre-rRNA, the central pseudoknot is not formed and the central core of the 18S rRNA is in an open configuration but becomes more constrained in 20S pre-rRNA. The essential ribosome biogenesis protein Mrd1 influences the structure of the 18S rRNA region locally and is involved in organizing the central pseudoknot and surrounding structures. We demonstrate that U3 snoRNA dynamically interacts with the 35S pre-rRNA and that Mrd1 is required for disrupting U3 snoRNA base pairing interactions in the 5'ETS. We propose that the dynamic U3 snoRNA interactions and Mrd1 are essential for establishing the structure of the central core of 18S rRNA that is required for processing and 40S subunit function.


Assuntos
Conformação de Ácido Nucleico , RNA Nucleolar Pequeno/genética , Proteínas de Ligação a RNA/genética , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Sítios de Ligação , Nucléolo Celular/química , Nucléolo Celular/genética , Precursores de RNA/genética , RNA Ribossômico 18S/genética , RNA Nucleolar Pequeno/química , Ribossomos/química , Saccharomyces cerevisiae/genética
2.
Nat Commun ; 8(1): 714, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28959008

RESUMO

While the protein composition of various yeast 60S ribosomal subunit assembly intermediates has been studied in detail, little is known about ribosomal RNA (rRNA) structural rearrangements that take place during early 60S assembly steps. Using a high-throughput RNA structure probing method, we provide nucleotide resolution insights into rRNA structural rearrangements during nucleolar 60S assembly. Our results suggest that many rRNA-folding steps, such as folding of 5.8S rRNA, occur at a very specific stage of assembly, and propose that downstream nuclear assembly events can only continue once 5.8S folding has been completed. Our maps of nucleotide flexibility enable making predictions about the establishment of protein-rRNA interactions, providing intriguing insights into the temporal order of protein-rRNA as well as long-range inter-domain rRNA interactions. These data argue that many distant domains in the rRNA can assemble simultaneously during early 60S assembly and underscore the enormous complexity of 60S synthesis.Ribosome biogenesis is a dynamic process that involves the ordered assembly of ribosomal proteins and numerous RNA structural rearrangements. Here the authors apply ChemModSeq, a high-throughput RNA structure probing method, to quantitatively measure changes in RNA flexibility during the nucleolar stages of 60S assembly in yeast.


Assuntos
Sondas RNA/genética , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Subunidades Ribossômicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Conformação de Ácido Nucleico , Dobramento de RNA , Sondas RNA/química , Sondas RNA/metabolismo , RNA Fúngico/genética , RNA Ribossômico/genética , RNA Ribossômico 5,8S/química , RNA Ribossômico 5,8S/genética , RNA Ribossômico 5,8S/metabolismo , Subunidades Ribossômicas/química , Subunidades Ribossômicas/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Biotechniques ; 63(3): 105-106, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28911313

RESUMO

Address correspondence to Sergey Belikov or Lars Wieslander, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden. E-mail: sergey.belikov@su.se or lars.wieslander@su.se.


Assuntos
Pegada de DNA , Primers do DNA/química , Sondas de DNA/química , Sondas de DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Nucleotídeos de Desoxiguanina/metabolismo , Inosina Trifosfato/análogos & derivados , Inosina Trifosfato/metabolismo , RNA Ribossômico 18S/química , RNA Ribossômico 18S/genética , Transcrição Reversa , Análise de Sequência de DNA
4.
PLoS One ; 12(4): e0175506, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28388671

RESUMO

Ribosome synthesis is an essential process in all cells. In Sacharomyces cerevisiae, the precursor rRNA, 35S pre-rRNA, is folded and assembled into a 90S pre-ribosomal complex. The 40S ribosomal subunit is processed from the pre-ribosomal complex. This requires concerted action of small nucleolar RNAs, such as U3 snoRNA, and a large number of trans-acting factors. Mrd1p, one of the essential small ribosomal subunit synthesis factors is required for cleavage of the 35S pre-rRNA to generate 18S rRNA of the small ribosomal subunit. Mrd1p is evolutionary conserved in all eukaryotes and in yeast it contains five RNA Binding Domains (RBDs) separated by linker regions. One of these linkers, Linker 2 between RBD2 and RBD3, is conserved in length, predicted to be structured and contains conserved clusters of amino acid residues. In this report, we have analysed Linker 2 mutations and demonstrate that it is essential for Mrd1p function during pre-ribosomal processing. Extensive changes of amino acid residues as well as specific changes of conserved clusters of amino acid residues were found to be incompatible with synthesis of pre-40S ribosomes and cell growth. In addition, gross changes in primary sequence of Linker 2 resulted in Mrd1p instability, leading to degradation of the N-terminal part of the protein. Our data indicates that Linker 2 is functionally coupled to RBD2 and argues for that these domains constitute a functional module in Mrd1p. We conclude that Linker 2 has an essential role for Mrd1p beyond just providing a defined length between RBD2 and RBD3.


Assuntos
Peptídeo Hidrolases/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Divisão Celular , Mutação , Ligação Proteica , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , Ribossomos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
5.
Cell Mol Life Sci ; 74(16): 2875-2897, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28314893

RESUMO

Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA-protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.


Assuntos
Transporte Ativo do Núcleo Celular , Ribonucleoproteínas/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Humanos , Poro Nuclear/metabolismo , Poliadenilação , Transporte Proteico , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ativação Transcricional
6.
J Cell Biol ; 211(1): 63-75, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26459599

RESUMO

Eukaryotic gene expression requires the ordered association of numerous factors with precursor messenger RNAs (premRNAs)/messenger RNAs (mRNAs) to achieve efficiency and regulation. Here, we use the Balbiani ring (BR) genes to demonstrate the temporal and spatial association of the exon junction complex (EJC) core with gene-specific endogenous premRNAs and mRNAs. The EJC core components bind cotranscriptionally to BR premRNAs during or very rapidly after splicing. The EJC core does not recruit the nonsense-mediated decay mediaters UPF2 and UPF3 until the BR messenger RNA protein complexes (mRNPs) enter the interchromatin. Even though several known adapters for the export factor NXF1 become part of BR mRNPs already at the gene, NXF1 binds to BR mRNPs only in the interchromatin. In steady state, a subset of the BR mRNPs in the interchromatin binds NXF1, UPF2, and UPF3. This binding appears to occur stochastically, and the efficiency approximately equals synthesis and export of the BR mRNPs. Our data provide unique in vivo information on how export competent eukaryotic mRNPs are formed.


Assuntos
Proteínas de Insetos/metabolismo , Proteínas Nucleares/metabolismo , Precursores de Proteínas/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Núcleo Celular/metabolismo , Chironomidae , Fator de Iniciação 4A em Eucariotos/metabolismo , Éxons , Ligação Proteica , Multimerização Proteica , Transporte Proteico , RNA Mensageiro/metabolismo
7.
Annu Rev Biochem ; 84: 65-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26034888

RESUMO

Eukaryotic gene expression is the result of the integrated action of multimolecular machineries. These machineries associate with gene transcripts, often already nascent precursor messenger RNAs (pre-mRNAs). They rebuild the transcript and convey properties allowing the processed transcript, the mRNA, to be exported to the cytoplasm, quality controlled, stored, translated, and degraded. To understand these integrated processes, one must understand the temporal and spatial aspects of the fate of the gene transcripts in relation to interacting molecular machineries. Improved methodology is necessary to study gene expression in vivo for endogenous genes. A complementary approach is to study biological systems that provide exceptional experimental possibilities. We describe such a system, the Balbiani ring (BR) genes in polytene cells in the dipteran Chironomus tentans. The BR genes, along with their pre-mRNA-protein complexes (pre-mRNPs) and mRNA-protein complexes (mRNPs), allow the visualization of intact cell nuclei and enable analyses of where and when different molecular machineries associate with and act on the BR pre-mRNAs and mRNAs.


Assuntos
Chironomidae/citologia , Chironomidae/genética , Puffs Cromossômicos/metabolismo , Ribonucleoproteínas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Puffs Cromossômicos/química , Puffs Cromossômicos/genética , Genes de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Processamento Pós-Transcricional do RNA , Ribonucleoproteínas/química , Ribonucleoproteínas/genética
8.
BMC Genomics ; 15: 819, 2014 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-25261295

RESUMO

BACKGROUND: The polytene nuclei of the dipteran Chironomus tentans (Ch. tentans) with their Balbiani ring (BR) genes constitute an exceptional model system for studies of the expression of endogenous eukaryotic genes. Here, we report the first draft genome of Ch. tentans and characterize its gene expression machineries and genomic architecture of the BR genes. RESULTS: The genome of Ch. tentans is approximately 200 Mb in size, and has a low GC content (31%) and a low repeat fraction (15%) compared to other Dipteran species. Phylogenetic inference revealed that Ch. tentans is a sister clade to mosquitoes, with a split 150-250 million years ago. To characterize the Ch. tentans gene expression machineries, we identified potential orthologus sequences to more than 600 Drosophila melanogaster (D. melanogaster) proteins involved in the expression of protein-coding genes. We report novel data on the organization of the BR gene loci, including a novel putative BR gene, and we present a model for the organization of chromatin bundles in the BR2 puff based on genic and intergenic in situ hybridizations. CONCLUSIONS: We show that the molecular machineries operating in gene expression are largely conserved between Ch. tentans and D. melanogaster, and we provide enhanced insight into the organization and expression of the BR genes. Our data strengthen the generality of the BR genes as a unique model system and provide essential background for in-depth studies of the biogenesis of messenger ribonucleoprotein complexes.


Assuntos
Chironomidae/genética , Puffs Cromossômicos , Genoma , Animais , Mapeamento de Sequências Contíguas , Drosophila melanogaster/genética , Loci Gênicos , Microscopia Eletrônica de Transmissão , Anotação de Sequência Molecular , Análise de Sequência de DNA , Transcriptoma
9.
Semin Cell Dev Biol ; 32: 47-54, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24813364

RESUMO

Release of properly processed and assembled mRNPs from the actively transcribing genes, movement of the mRNPs through the interchromatin and interaction with the Nuclear Pore Complexes, leading to cytoplasmic export, are essential steps of eukaryotic gene expression. Here, we review these intranuclear gene expression steps.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Modelos Genéticos , Poro Nuclear/metabolismo , Transporte de RNA , RNA Mensageiro/genética , Ribonucleoproteínas/genética
10.
Mol Cell ; 52(5): 707-19, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24239293

RESUMO

In vivo UV crosslinking identified numerous preribosomal RNA (pre-rRNA) binding sites for the large, highly conserved ribosome synthesis factor Rrp5. Intramolecular complementation has shown that the C-terminal domain (CTD) of Rrp5 is required for pre-rRNA cleavage at sites A0-A2 on the pathway of 18S rRNA synthesis, whereas the N-terminal domain (NTD) is required for A3 cleavage on the pathway of 5.8S/25S rRNA synthesis. The CTD was crosslinked to sequences flanking A2 and to the snoRNAs U3, U14, snR30, and snR10, which are required for cleavage at A0-A2. The NTD was crosslinked to sequences flanking A3 and to the RNA component of ribonuclease MRP, which cleaves site A3. Rrp5 could also be directly crosslinked to several large structural proteins and nucleoside triphosphatases. A key role in coordinating preribosomal assembly and processing was confirmed by chromatin spreads. Following depletion of Rrp5, cotranscriptional cleavage was lost and preribosome compaction greatly reduced.


Assuntos
Proteínas Fúngicas/genética , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , RNA Fúngico/genética , RNA Ribossômico/genética , Ribossomos/genética , Sequência de Bases , Sítios de Ligação , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Nucleosídeo-Trifosfatase/genética , Nucleosídeo-Trifosfatase/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , Leveduras/genética , Leveduras/metabolismo
11.
Nucleic Acids Res ; 41(2): 1178-90, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193268

RESUMO

Ribosomal subunit biogenesis in eukaryotes is a complex multistep process. Mrd1 is an essential and conserved small (40S) ribosomal subunit synthesis factor that is required for early cleavages in the 35S pre-ribosomal RNA (rRNA). Yeast Mrd1 contains five RNA-binding domains (RBDs), all of which are necessary for optimal function of the protein. Proteomic data showed that Mrd1 is part of the early pre-ribosomal complexes, and deletion of individual RBDs perturbs the pre-ribosomal structure. In vivo ultraviolet cross-linking showed that Mrd1 binds to the pre-rRNA at two sites within the 18S region, in helix 27 (h27) and helix 28. The major binding site lies in h27, and mutational analyses shows that this interaction requires the RBD1-3 region of Mrd1. RBD2 plays the dominant role in h27 binding, but other RBDs also contribute directly. h27 and helix 28 are located close to the sequences that form the central pseudoknot, a key structural feature of the mature 40S subunit. We speculate that the modular structure of Mrd1 coordinates pseudoknot formation with pre-rRNA processing and subunit assembly.


Assuntos
Precursores de RNA/metabolismo , RNA Ribossômico 18S/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , Precursores de RNA/química , RNA Ribossômico 18S/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Subunidades Ribossômicas Menores de Eucariotos/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
12.
PLoS One ; 7(9): e43786, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984444

RESUMO

Ribosome biogenesis in eukaryotes requires coordinated folding and assembly of a pre-rRNA into sequential pre-rRNA-protein complexes in which chemical modifications and RNA cleavages occur. These processes require many small nucleolar RNAs (snoRNAs) and proteins. Rbm19/Mrd1 is one such protein that is built from multiple RNA-binding domains (RBDs). We find that Rbm19/Mrd1 with five RBDs is present in all branches of the eukaryotic phylogenetic tree, except in animals and Choanoflagellates, that instead have a version with six RBDs and Microsporidia which have a minimal Rbm19/Mrd1 protein with four RBDs. Rbm19/Mrd1 therefore evolved as a multi-RBD protein very early in eukaryotes. The linkers between the RBDs have conserved properties; they are disordered, except for linker 3, and position the RBDs at conserved relative distances from each other. All but one of the RBDs have conserved properties for RNA-binding and each RBD has a specific consensus sequence and a conserved position in the protein, suggesting a functionally important modular design. The patterns of evolutionary conservation provide information for experimental analyses of the function of Rbm19/Mrd1. In vivo mutational analysis confirmed that a highly conserved loop 5-ß4-strand in RBD6 is essential for function.


Assuntos
Sequência Conservada , Evolução Molecular , Proteínas de Ligação a RNA/genética , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Análise Mutacional de DNA , Genoma Fúngico/genética , Humanos , Microsporida/genética , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
Chromosoma ; 120(1): 23-38, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21079985

RESUMO

Nucleocytoplasmic export and biogenesis of mRNPs are closely coupled. At the gene, concomitant with synthesis of the pre-mRNA, the transcription machinery, hnRNP proteins, processing, quality control and export machineries cooperate to release processed and export competent mRNPs. After diffusion through the interchromatin space, the mRNPs are translocated through the nuclear pore complex and released into the cytoplasm. At the nuclear pore complex, defined compositional and conformational changes are triggered, but specific cotranscriptionally added components are retained in the mRNP and subsequently influence the cytoplasmic fate of the mRNP. Processes taking place at the gene locus and at the nuclear pore complex are crucial for integrating export as an essential part of gene expression. Spatial, temporal and structural aspects of these events have been highlighted in analyses of the Balbiani ring genes.


Assuntos
Puffs Cromossômicos/metabolismo , Poro Nuclear/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , Ribonucleoproteínas/metabolismo , Animais , Transporte Biológico/fisiologia , Citoplasma/metabolismo , Humanos
14.
Exp Cell Res ; 316(6): 1028-38, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19853599

RESUMO

We have studied the nucleocytoplasmic transport of a specific messenger RNP (mRNP) particle, named Balbiani ring (BR) granule, and ribosomal RNP (rRNP) particles in the salivary glands of the dipteran Chironomus tentans. The passage of the RNPs through the nuclear pore complex (NPC) was inhibited with the nucleoporin-binding wheat germ agglutinin, and the effects were examined by electron microscopy. BR mRNPs bound to the nuclear basket increased in number, while BR mRNPs translocating through the central channel decreased, suggesting that the initiation of translocation proper had been inhibited. The rRNPs accumulated heavily in nucleoplasm, while no or very few rRNPs were recorded within nuclear baskets. Thus, the transport of rRNPs had been blocked prior to the entry into the baskets. Remarkably, the rRNPs had been excluded both from baskets and the space in between the baskets. We propose that normally basket fibrils move freely and repel RNPs from the exclusion zone unless the particles have affinity for and bind to nucleoporins within the baskets.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Membrana Nuclear , Ribonucleoproteínas/metabolismo , Ribossomos/metabolismo , Animais , Chironomidae/metabolismo , Chironomidae/ultraestrutura , Larva/anatomia & histologia , Larva/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ribonucleoproteínas/genética , Ribossomos/química , Glândulas Salivares/citologia
15.
Mol Cell Biol ; 29(21): 5763-74, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19704003

RESUMO

In eukaryotes, ribosomes are made from precursor rRNA (pre-rRNA) and ribosomal proteins in a maturation process that requires a large number of snoRNPs and processing factors. A fundamental problem is how the coordinated and productive folding of the pre-rRNA and assembly of successive pre-rRNA-protein complexes is achieved cotranscriptionally. The conserved protein Mrd1p, which contains five RNA binding domains (RBDs), is essential for processing events leading to small ribosomal subunit synthesis. We show that full function of Mrd1p requires all five RBDs and that the RBDs are functionally distinct and needed during different steps in processing. Mrd1p mutations trap U3 snoRNA in pre-rRNP complexes both in base-paired and non-base-paired interactions. A single essential RBD, RBD5, is involved in both types of interactions, but its conserved RNP1 motif is not needed for releasing the base-paired interactions. RBD5 is also required for the late pre-rRNP compaction preceding A(2) cleavage. Our results suggest that Mrd1p modulates successive conformational rearrangements within the pre-rRNP that influence snoRNA-pre-rRNA contacts and couple U3 snoRNA-pre-rRNA remodeling and late steps in pre-rRNP compaction that are essential for cleavage at A(0) to A(2). Mrd1p therefore coordinates key events in biosynthesis of small ribosome subunits.


Assuntos
Pareamento de Bases/genética , RNA Nucleolar Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alelos , Sequência de Aminoácidos , Fluoruracila/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Dominantes , Teste de Complementação Genética , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Mutação/genética , Ácido Orótico/análogos & derivados , Ácido Orótico/farmacologia , Estrutura Terciária de Proteína , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/química , Ribonucleoproteínas/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química
16.
J Cell Biol ; 184(4): 555-68, 2009 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-19221196

RESUMO

Serine/arginine-rich (SR) proteins are required for messenger RNA (mRNA) processing, export, surveillance, and translation. We show that in Chironomus tentans, nascent transcripts associate with multiple types of SR proteins in specific combinations. Alternative splicing factor (ASF)/SF2, SC35, 9G8, and hrp45/SRp55 are all present in Balbiani ring (BR) pre-messenger ribonucleoproteins (mRNPs) preferentially when introns appear in the pre-mRNA and when cotranscriptional splicing takes place. However, hrp45/SRp55 is distributed differently in the pre-mRNPs along the gene compared with ASF/SF2, SC35, and 9G8, suggesting functional differences. All four SR proteins are associated with the BR mRNPs during export to the cytoplasm. Interference with SC35 indicates that SC35 is important for the coordination of splicing, transcription, and 3' end processing and also for nucleocytoplasmic export. ASF/SF2 is associated with polyribosomes, whereas SC35, 9G8, and hrp45/SRp55 cosediment with monoribosomes. Thus, individual endogenous pre-mRNPs/mRNPs bind multiple types of SR proteins during transcription, and these SR proteins accompany the mRNA and play different roles during the gene expression pathway in vivo.


Assuntos
Chironomidae/metabolismo , Proteínas de Insetos/metabolismo , Precursores de RNA/metabolismo , beta Carioferinas/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Íntrons , Biossíntese de Proteínas , Transporte de RNA , Ribonucleoproteínas/metabolismo
17.
Methods Mol Biol ; 464: 29-54, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18951178

RESUMO

Gene expression in eukaryotic cells is a multi-step process. Many of the steps are both co-ordinated and quality controlled. For example, transcription is closely coupled to pre-messenger RNA (mRNA)-protein assembly, pre-mRNA processing, surveillance of the correct synthesis of messenger ribonucleoprotein (mRNP), and export. The coordination appears to be exerted through dynamic interactions between components of the transcription, processing, surveillance, and export machineries. Our knowledge is so far incomplete about these molecular interactions and where in the nucleus they take place. It is therefore essential to analyze the intranuclear steps of gene expression in vivo. Polytene nuclei are exceptionally large and contain chromosomes and individual genes that can be structurally analyzed in situ during ongoing transcription. Furthermore, they contain gene-specific pre-mRNPs/mRNPs that can be visualised and analyzed as they are synthesised on the gene and then followed on their path to the cytoplasm. We describe methods for investigating the structure and composition of active chromatin and gene-specific pre-mRNPs/mRNPs in the context of analyses of gene expression processes in the nuclei of polytene cells.


Assuntos
Núcleo Celular/genética , Animais , Núcleo Celular/ultraestrutura , Cromossomos/genética , Cromossomos/ultraestrutura , Humanos , Microscopia Eletrônica , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , RNA Mensageiro/genética , Transcrição Gênica/genética , Transcrição Gênica/fisiologia
18.
Nucleic Acids Res ; 36(13): 4364-80, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18586827

RESUMO

In Saccharomyces cerevisiae, synthesis of the small ribosomal subunit requires assembly of the 35S pre-rRNA into a 90S preribosomal complex. SnoRNAs, including U3 snoRNA, and many trans-acting proteins are required for the ordered assembly and function of the 90S preribosomal complex. Here, we show that the conserved protein Mrd1p binds to the pre-rRNA early during transcription and is required for compaction of the pre-18S rRNA into SSU processome particles. We have exploited the fact that an Mrd1p-GFP fusion protein is incorporated into the 90S preribosomal complex, where it acts as a partial loss-of-function mutation. When associated with the pre-rRNA, Mrd1p-GFP functionally interacts with the essential Pwp2, Mpp10 and U3 snoRNP subcomplexes that are functionally interconnected in the 90S preribosomal complex. The fusion protein can partially support 90S preribosome-mediated cleavages at the A(0)-A(2) sites. At the same time, on a substantial fraction of transcripts, the composition and/or structure of the 90S preribosomal complex is perturbed by the fusion protein in such a way that cleavage of the 35S pre-rRNA is either blocked or shifted to aberrant sites. These results show that Mrd1p is required for establishing productive structures within the 90S preribosomal complex.


Assuntos
Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Mutação , Fosfoproteínas/metabolismo , Processamento Pós-Transcricional do RNA , RNA Nucleolar Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas , Subunidades Ribossômicas Menores de Eucariotos/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica
19.
Chromosoma ; 115(6): 449-58, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16858590

RESUMO

The members of the serine-arginine (SR) family of proteins play multiple roles in posttranscriptional gene expression. Initially considered as essential splicing factors confined to the nucleus and regulating constitutive and alternative splicing, SR proteins are now known to shuttle between the nucleus and the cytoplasm and to be involved in mRNA biogenesis, transport, and translation. In Chironomus tentans, hrp45 is an SR protein structurally similar to the Drosophila SRp55/B52 SR protein. We have studied how hrp45, hrp36 [a heterogenous nuclear ribonucleoprotein (hnRNP) protein], and small nuclear RNP (snRNP) proteins are distributed in the transcriptionally active loci of polytene chromosomes in C. tentans. Immunofluorescence visualization of the proteins in double-labeling experiments revealed that hrp45 preferentially associates with a small number of puffs. On the other hand, hrp36 and snRNP proteins were found distributed in a large number of loci with little quantitative difference. Remarkably, hrp45-labeled loci coincide with the sites of transcription of premessenger RNPs of secretory protein (sp) genes. Because the labeling was found sensitive to RNase A treatment, we conclude that the SR protein hrp45 preferentially binds to sp gene transcripts in salivary gland cells. The preferential association of a specific SR protein with a particular type of gene transcripts reflects substrate-specific function(s) of an SR protein, in vivo. The possible roles that hrp45 might be playing in speedy and efficient processing of sp gene transcripts are discussed.


Assuntos
Chironomidae/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteínas de Insetos/metabolismo , Glândulas Salivares/metabolismo , Proteínas e Peptídeos Salivares/genética , Animais , Anticorpos Monoclonais/metabolismo , Sítios de Ligação , Chironomidae/metabolismo , Mapeamento Cromossômico , Cromossomos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/imunologia , Proteínas de Insetos/imunologia , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Fatores de Processamento de Serina-Arginina , Transcrição Gênica
20.
Mol Biol Cell ; 17(1): 32-42, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16236800

RESUMO

Chironomus tentans-repressor splicing factor (Ct-RSF) represses the activation of splicing by SR proteins in vitro. Ct-RSF colocalizes with the Ser-Arg-rich (SR) protein hrp45 in interchromatin granule clusters and coimmunoprecipitates with hrp45 in nuclear extracts. Ct-RSF and hrp45 can also interact directly in vitro. Ct-RSF and hrp45 are recruited together to transcribing genes and associate with growing pre-mRNAs. Ct-RSF and hrp45 colocalize at a large number of gene loci. Injection of anti-Ct-RSF antibodies into nuclei of living cells blocks association of both Ct-RSF and hrp45 with the growing pre-mRNA, whereas binding of U2 small nuclear ribonucleoprotein particle (snRNP) to the pre-mRNA is unaffected. On the intron-rich Balbiani ring (BR) 3 pre-mRNA, hrp45 as well as U1 and U2 snRNPs bind extensively, whereas relatively little Ct-RSF is present. In contrast, the BR1 and BR2 pre-mRNAs, dominated by exon sequences, bind relatively much Ct-RSF compared with hrp45 and snRNPs. Our data suggest that Ct-RSF represses SR protein function at exons and that the assembly of spliceosomes at authentic splice sites displaces Ct-RSF locally.


Assuntos
Chironomidae/metabolismo , Éxons/genética , Precursores de RNA/genética , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Células Cultivadas , Chironomidae/genética , Ligação Proteica , Precursores de RNA/metabolismo , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...